<u>Topic 1 – Classification, variation and inheritance</u>

• CLASSIFICATION

- Classification sorting organisms into groups based on their characteristics (i.e according to how closely they are related to one another)
- At the most basic level, organisms are classified into one of five 'kingdoms'...
 - o Animalia (the 'animal kingdom'):
 - Multicellular (made of many cells)
 - Heterotrophic feeders i.e animals get their food by eating and digesting other organisms
 - No cell walls, complex cell structure with nucleus
 - o Plantae (the 'plant kingdom'):
 - Multicellular
 - Autotrophic feeders i.e plants make their own food through photosynthesis
 - Cell walls made of cellulose (to provide support to plants)
 - Complex cell structure with nucleus
 - o Fungi:
 - Multicellular, cell walls not made of cellulose
 - Saprophytic feeders i.e fungi get their food from dead or decaying matter
 - Complex cell structure with nucleus
 - Protoctista: unicellular (made of one cell), complex cell structure with nucleus
 - o Prokaryotae: unicellular, simple cell structure with no nucleus
- Note there is no kingdom for viruses because...
 - o They are non-living
 - They're not made up of cells (no cell organelles)
 - They can only exist inside 'host' cells (e.g inside human cells)
- Living organisms in kingdoms are further divided into 6 sub-categories:
 - o Phylum, Class, Order, Family, Genus and Species
 - As you progress from kingdom→phylum→class→order→family→genus →species, the groups are smaller and the organisms share more and more characteristics in common (i.e organisms are more and more alike)

Naming species:

- An organism's scientific name has two latin words, made up of the genus and species name this is called the binomial system:
 - E.g humans are Homo Sapiens 'Homo' is the genus, 'sapiens' is the species
- The binomial naming system is in latin...:
 - o Because common names given to organisms can sometimes be misleading:
 - E.g robins in America (turdus migratorius) and robins in the UK (erithacus rubecula) are different species
 - So that scientists all over the world can communicate clearly, whatever their language

• VERTEBRATES AND INVERTEBRATES

- Vertebrates are animals that have a backbone – a supporting rod that runs the length of the body
- All vertebrates belong to the phylum Chordata
- Animals that don't have a backbone are called invertebrates
- Both vertebrates and invertebrates
 (phyla plural of phylum) are divided
 into smaller groups (classes), according
 to different characteristics...

• Grouping vertebrates into classes:

- 1. Vertebrates can be grouped into classes according to <u>how they absorb</u> <u>oxygen</u> for respiration:
 - Fish gills to take in oxygen from the water
 - Amphibians young amphibians have gills but adult amphibians usually have lungs and can absorb oxygen through their moist skin
 - Other groups of vertebrates (mammals, reptiles, birds) have lungs
- 2. Vertebrates can be grouped into classes according to <u>how they reproduce</u>:
 - O Some vertebrates reproduce using external fertilisation i.e the egg is fertilised outside the body of the female...:
 - Adult female releases eggs into the water, where they're fertilised by the sperm released by an adult male (fish and amphibians)
 - Other vertebrates reproduce by placing sperm inside the female so that the egg is fertilised inside the body internal fertilisation...:
 - Organisms which reproduce in this way and then lay eggs are known as oviparous (reptiles and birds)
 - Organisms which reproduce in this way and then give birth to live young are known as viviparous (mammals)
- 3. Vertebrates can be grouped into classes according to the way in which they regulate their body temperature ('thermoregulation'):
 - Homeotherms ('warm blooded') e.g mammals, birds have an internal mechanism that keeps their body temperature <u>constant</u>
 - o Poikilotherms ('cold blooded') e.g reptiles, amphibians, fish their body temperature <u>changes</u> according to the external temperature

• Some vertebrates are difficult to classify:

- Some organisms don't fit perfectly into any class
- \rightarrow even within a class, some species have different characteristics to the rest:
 - E.g axolotls have gills even as an adult but are still classed as amphibians (even though they respire more like fish)
 - E.g2 sharks use internal fertilisation and give birth to live young but are still classed as fish (even though they reproduce more like mammals)
- \rightarrow it's important to look at many characteristics when deciding which group to place an organism

SPECIES

• A species is defined as a group of organisms that can interbreed (i.e reproduce with one another) to produce offspring that are fertile (i.e able to produce offspring of their own)

• Difficulties with classification:

- 1. Variation exists (even within organisms of the same species)
- 2. Asexual reproduction:
 - o Some organisms don't need to interbreed to produce offspring
 - o If we don't see interbreeding we can't test whether or not two individuals are the same species

• 3. Ring species:

- Sometimes there's a chain of different populations that can breed with their neighbouring populations but the two populations at the end of the chain can't interbreed
- o The chain often forms a ring shape → these organisms are called ring species difficult to divide into separate species

• 3. Hybridisation in ducks:

- Mallard ducks can interbreed with closely related species to produce fertile hybrids
- Fertile hybrids can in turn breed with other closely related ducks to form other fertile hybrids
- o This interbreeding results in the creation of ring species → difficult to classify

VARIATION

• Differences in characteristics are called variation

• Discontinuous variation:

- o Take a fixed set of values categories (e.g shoe size, blood group, gender)
- O Discontinuous variation is usually caused by instructions within cells → is called genetic variation
- o Discontinuous data is plotted on a bar graph

• Continuous variation:

- O Values can be any number within a certain range (e.g height, weight)
- Characteristics that show continuous variation are often controlled by both genes and the environment...e.g:
 - You may inherit a tendency for being tall from parents
 - But diet and lifestyle are also important in determining height
- Characteristics influenced by the environment (i.e diet/disease/ lifestyle) are known as 'acquired characteristics' called 'environmental variation'
- Continuous data is plotted on a line graph (usually gives a normal distribution of values i.e bell-shaped curve)

• Biodiversity:

- Biodiversity is a measure of the total number of different species in an area
- Areas of greater biodiversity ('biodiversity hotspots') need to be protected because they contain a large variety of species within them

• ADAPTATION

- All organisms are adapted to their surroundings i.e they have variations in their characteristics that allows them to survive in their habitats (places where they live)
- E.g organisms from polar regions (e.g polar bears) are adapted to the cold:
 - o Small ears stop heat loss

- o Thick fur for insulation...white fur for camouflage in snow
- o Thick layer of fat for insulation from cold
- o Large spread out feet → stop it from sinking into the snow
- E.g2 Organisms living near deep-sea hydrothermal vents (e.g deep-sea Pompeii worms) have the opposite problem:
 - o Top fluids come out of these vents and cool quickly
 - →deep-sea Pompeii worms must cope with big temperature changes, complete darkness and huge pressures:
 - Body is adapted to cope with very high pressures
 - No eyes (doesn't need them because its habitat deep under the sea is in complete darkness it does have sensitive tentacles, though)
 - Body is covered in a thick layer of bacteria that helps protect it from the heat
 - Spends lots of time inside a paper-like tube to hide from predators

EVOLUTION

- Darwin's theory of evolution by natural selection:
- Organisms produce more offspring than the environment can support:
 - o Limited resources (e.g limited food and space) means there's <u>competition</u> for survival between individuals
 - → Most offspring die before reaching adulthood
- Even within the same species, organisms show variation in their characteristics...:
 - o Individuals who are well adapted to their environment are more likely to survive, breed, and pass on their genes to their offspring
 - o Individuals who are less well adapted to their environment are more likely to die→less likely to breed and pass on their genes to their offspring
 - →Over generations, there is a gradual shift in the variation of characteristics in a species this is evolution
 - E.g if an environment becomes drier, then individuals better suited to drier conditions survive →over time, species becomes better suited to the drier conditions
 - o This process is called 'survival of the fittest' or 'natural selection'
- If the environment changes too rapidly and no individuals have adaptations that help them survive, they all die and the species may become extinct
- New evidence for Darwin's theory:
- Resistant organisms:
 - o In the 1940s and 1950s, warfarin was used to poison rats
 - O However, within 10 years, most rats were resistant to warfarin (i.e rats were not affected by the poison)
 - Explanation using Darwin's theory:
 - As a result of variation, there were a few rats that by chance had always been resistant to warfarin poison
 - As non-resistant rats were killed by poison, the only ones left to breed were the warfarin resistant rats
 - their warfarin resistance characteristic was passed on to their offspring →over some years most rats became resistant
- DNA research has shown how characteristics are passed on to offspring > this also supports Darwin's theory of natural selection
- Speciation:
- The formation of a new species as a result of geographical isolation

• Example of speciation:

- Darwin noted that although mockingbirds on different Galapagos islands were very closely related, each island had its own species of bird
- Darwin guessed that originally individuals from one species of mockingbird had reached the Galapagos islands
- The environmental conditions on each island were different...
 - On each island, those with successful adaptations survived, bred, and passed on their genes to their offspring
 - →Each island population of mockingbirds evolved in a different way (to adapt to the specific conditions on each island)
- Over time, the mockingbirds on each island became so different that they could no longer interbreed with birds from other islands to produce fertile offspring
- \rightarrow new mockingbird species were formed this process is called speciation

GENES

- Animal cells have a cell membrane, cytoplasm and a nucleus
- Inside the nucleus are long strands of a substance called DNA
- Each strand of DNA forms a structure called a chromosome
- Human body cells contain 23 pairs of chromosomes (>46 in total) in their nuclei
- Each chromosome carries a large number of genes
- Each gene does a particular job...e.g:
 - o Many genes control variations in our characteristics e.g how we look like
 - Other genes contain information about how likely we are to get certain diseases
- Variation caused by genes is called inherited variation because genes are inherited from our parents

• Alleles:

- There are two copies of every chromosome (23 pairs) in a body cell nucleus
 → there are two copies of every gene
- These gene pairs may contain slightly different instructions for the same characteristic:
 - o E.g may code for brown eye colour instead of for blue eye colour
- These different forms of the same gene are called alleles
- Each of us can inherit a different set of alleles from our parents (see punnett square below) → giving each of us slightly different characteristics (this explains why twins can sometimes be very different)

EXPLAINING INHERITANCE

- Plants and animal cells produce gametes (sex cells)
- Male gametes sperm in animals, pollen grains in plants
- Female gametes egg cells in both animals and plants
- Gametes are different from other body cells because they only have one copy of each chromosome (i.e 23 chromosomes in their nucleus...not 46)
- \rightarrow Gametes only have one allele for each gene
- In sexual reproduction the male and female gametes fuse together → organism formed has 46 chromosomes (23 pairs) in their body cells, with two alleles for each gene (one from the male parent, one from the female parent)

• Inheritance terminology:

- Dominant alleles have an effect even if there is just one copy of it
- Recessive alleles need to be present as a pair to have an effect

- A dominant characteristic is seen even if just one allele is dominant
- A recessive characteristic is only seen if both alleles are recessive
- This can be shown by drawing a punnett square (see below):
 - o A dominant allele is shown by a capital letter (e.g T)
 - The recessive allele has the lower case version of the same letter (e.g if dominant allele is 'T', then recessive allele is 't')
- The alleles in an organism are its genotype
- What an organism looks like is its phenotype
- If both alleles in an organism are the same, the organism is homozygous (e.g TT)
- If the alleles are different, the organism is heterozygous (e.g Tt)

• Punnett squares:

 Possible genotypes produced when two organisms breed can also be shown in a Punnett square

T t
TT Tt

Female Gametes
t Tt tt

- Parents have the genotype Tt (one dominant allele and one recessive allele)

 they are heterozygous dominant
- T is dominant \rightarrow both parents are tall (the phenotype)
- When gametes fuse, alleles can come together in different combinations:
 - o 25% TT (genotype homozygous dominant, phenotype tall)
 - o 50% Tt (genotype heterozygous dominant, phenotype tall)
 - o 25% tt (genotype homozygous recessive, phenotype short)
 - there's a 3 in 4 chance (75%) that offspring will be tall
 - → there's a 1 in 4 chance (25%) that offspring will be short

GENETIC DISORDERS

- Genetic disorders such as sickle cell anaemia are caused by faulty alleles
- Sickle cell anaemia:
 - o It's a genetic disease that causes red blood cells to clump together
 - o The allele that causes sickle cell anaemia is recessive → both copies are needed for people to suffer from the disorder
 - o Symptoms:
 - Sufferers become easily tired and short of breath
 - Painful joints (because their red blood cells stick together and block blood vessels – can sometimes be fatal)
- Another genetic disorder caused by a recessive (faulty) allele is cystic fibrosis:
 - Lungs get clogged with thick mucus, making breathing difficult and leading to infections
 - Mucus also blocks some of the tubes that carry enzymes to the small intestine to digest food
 - Lack of enzymes able to digest food can result in weight loss

• Family pedigree charts:

• Family pedigree charts show how a genetic disorder is passed on in a family

• Carriers:

- Doctors can use family pedigree charts to work out the probability of a person inheriting a genetic disorder from their parents this is pedigree analysis
- Carriers are individuals who don't have the disease themselves but can pass it on to their offspring if their partner is also a carrier for the same disease:
 - E.g a person who is Cc is a carrier for cystic fibrosis because they have a copy of the faulty allele
 - They don't have the disease, though, because cystic fibrosis is recessive (both recessive alleles need to be present - cc)
- If both parents are carriers (can find this out by genetic screening), doctors can help couples decide whether to try for a baby or not