| 4.13 Use the fundament                             |                                                               | 4.15 Use the equation for gro                            | avitational potential              |
|----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|------------------------------------|
| A cyclist transfers 7.2 x 10 <sup>4</sup> J in 10s | s. What is her power?                                         | energy (GPE)                                             |                                    |
| E= Equation:                                       |                                                               | Equation for GPE:L                                       |                                    |
| t=Insert value                                     | s:                                                            | A fell-runner runs up a 200m high hill. H                | · ·                                |
| P= 22                                              |                                                               | much gravitational potential energy doe  m= Equation:    | •                                  |
|                                                    | P= unit:<br>0 <sup>6</sup> W. How much work does it do in     |                                                          |                                    |
| two minutes?                                       | J W. How much work does it do in                              | h= Insert values:                                        |                                    |
|                                                    |                                                               | g= Answer: GP                                            | E= unit:                           |
| Rearranging                                        |                                                               | GPE= ??                                                  |                                    |
| t=                                                 |                                                               | An aircraft of mass 4.0 x 10 <sup>5</sup> kg is cruising | g at a high altitude. It has 2.0 x |
| F                                                  | S:                                                            | 10 <sup>10</sup> J of GPE. What is its altitude?         |                                    |
|                                                    | E= unit:<br>rsa a distance of 1.3x10 <sup>5</sup> m against a |                                                          |                                    |
| drag force of 6400N. It has a power                |                                                               | h= ?? Rearranging:                                       |                                    |
| journey taken? Working out E                       | 0 10                                                          | g= Insert values:                                        |                                    |
| E= ?? Equation:                                    |                                                               | GPE= Answer: h=_                                         | unit:                              |
| t= ?? Insert value                                 | s:                                                            | An Ipad is on a desk 1.2m from the grou                  | nd. It has 8.16J of GPE. What is   |
| P= Answer:                                         | E= unit:                                                      | its mass?                                                |                                    |
| Working out t                                      |                                                               | m= ?? Equation:                                          | <del></del>                        |
|                                                    |                                                               | h= Rearranging:                                          |                                    |
| d= Rearranging                                     | Ç:                                                            | g= Insert values:                                        |                                    |
| Insert value                                       | es:                                                           | GPE= Answer: m=                                          | unit:                              |
| Answer:                                            | t= unit:                                                      |                                                          |                                    |
|                                                    |                                                               |                                                          |                                    |
|                                                    |                                                               |                                                          |                                    |
| $\sqrt{4.16}$ Use the equation for                 | <u>r kinetic energy</u>                                       | 4.17 Demonstrate an undersi                              | tanding of the idea of             |
| Equation:                                          | Unit:                                                         | conservation of energy in var                            | rious energy transfers             |
| A motorbike of mass 300                            | kg is travelling at 15m/s.                                    | A diver has 4000 J of                                    | energy at                          |
| How much kinetic energy                            | does it have?                                                 | the start of the jump. He has                            | J of                               |
| m=Equation:                                        |                                                               | energy as he enters the water                            |                                    |
|                                                    |                                                               | Calculate the velocity of the I                          |                                    |
| V= Insert value KE= ??                             | s:                                                            | when it hits the ground.                                 | pad in Section 1.15                |
| Answer:                                            | KE= unit:                                                     |                                                          |                                    |
| Another motorbike has th                           | ne same amount of kinetic                                     |                                                          |                                    |
| energy, but a mass of 200                          | Okg. How fast is it moving?                                   | KE= Rearranging:                                         |                                    |
| m= Equation:                                       |                                                               | m= Insert values:                                        |                                    |
| V= ?? Rearranging                                  | 5:                                                            | V= ??                                                    | unit:                              |
|                                                    | es:                                                           | Allswell. V                                              | unic                               |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \            | = unit:                                                       |                                                          |                                    |
| Allower. V                                         |                                                               |                                                          |                                    |
|                                                    |                                                               |                                                          |                                    |
| 4.18 Carry out calculation                         | ns on work done to show the d                                 | ependence of braking distance f                          | or a vehicle on initial            |
| velocity squared (work do                          | one to bring a vehicle to rest e                              | quals its initial kinetic energy)                        |                                    |
| A car of mass 1000kg does an e                     | mergency stop from 15m/s to rest, ap                          | oplying a force of friction 8 000 N                      | <u>Conclusion</u>                  |
| The same car does another eme                      | ergency stop, this time from 30m/s, ap                        | pplying the same force.                                  | When the velocity is               |
| For each car, calculate the dista                  | nce travelled to come to rest.                                |                                                          | doubled, the stopping              |
| m= Equation:                                       | m=                                                            | Equation:                                                | distance                           |
| v= Insert values:                                  |                                                               | Insert values:                                           | because                            |
|                                                    | unit: E= ??                                                   | Answer: E= unit:                                         |                                    |
|                                                    | F=                                                            | Equation:                                                |                                    |
| d= ??                                              | d= ??                                                         | Rearranging:                                             |                                    |
| u-!!                                               | u= !!                                                         |                                                          |                                    |
| Insert values:                                     |                                                               | Insert values:                                           |                                    |
| Answer: d=                                         | unit:                                                         | Answer: d=unit:                                          |                                    |

| Name: | Class: |
|-------|--------|
|       | 0.0.00 |

## **Additional Science Homework**

**P2** Physics for your future

Topic 4: Momentum, energy, work and power

| 4.1 Recall how the stopping distance of a vehicle is rela         | nted to the thinking distance and the braking distance                    | 4.7 Demonstrate an understanding of the idea of rate of cha                                                                          | 4.7 Demonstrate an understanding of the idea of rate of change of momentum to explain protective features including    |  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| distance = distance + distance                                    |                                                                           | bubble wraps, seat belts, crumple zones and air bags                                                                                 |                                                                                                                        |  |
|                                                                   |                                                                           | When a car cashes, its momentum is reduced to Thi                                                                                    | s can happen in a long or short time. If the reduction of                                                              |  |
| 4.2 Demonstrate an understanding of the factors affecting the sto | conning distance of a vehicle, including:                                 | momentum takes a long time, we say this is a (high/low) rate                                                                         | momentum takes a long time, we say this is a (high/low) rate of change of momentum. If the reduction of momentum takes |  |
|                                                                   | 's reaction time, d the state of the vehicle's brakes, e the state of the | a short time, we say this is a (high/low) rate of change of more                                                                     | mentum. Explain how bubble wrap, seat belts, crumple zones                                                             |  |
| road, f the amount of friction between the tyre and the road surf | face                                                                      | and air bags reduce the rate of change of momentum:                                                                                  |                                                                                                                        |  |
| Factor Affects thinking distance Affects braking distance Reason  | on                                                                        |                                                                                                                                      |                                                                                                                        |  |
| Mass of the vehicle                                               |                                                                           |                                                                                                                                      |                                                                                                                        |  |
| Speed of the vehicle                                              |                                                                           | A O law artificant a hours assumed a sound as a sound to work was the                                                                | Source in collisions                                                                                                   |  |
| Distractions (loud music,                                         |                                                                           | <u>4.8 Investigate how crumple zones can be used to reduce the</u> Describe how you would use an accelerometer (acceleration reduce) |                                                                                                                        |  |
| mobile phone)                                                     |                                                                           | wrap to investigate the hypothesis that the thickness of a crui                                                                      |                                                                                                                        |  |
| Drugs / alcohol                                                   |                                                                           | wrap to investigate the hypothesis that the thickness of a crain                                                                     | inple 20the diffects the force suffered by the trolley.                                                                |  |
| Faulty brakes                                                     |                                                                           |                                                                                                                                      |                                                                                                                        |  |
| Ice / rain on road                                                |                                                                           |                                                                                                                                      |                                                                                                                        |  |
| Road surface worn down                                            |                                                                           |                                                                                                                                      |                                                                                                                        |  |
|                                                                   |                                                                           |                                                                                                                                      |                                                                                                                        |  |
| 4.3 Investigate the forces required to slide blocks along         | a different surfaces, with differing amounts of friction                  | 4.9 Use the equation which links force with change                                                                                   | 4.10 Use the equation linking work done with force                                                                     |  |
| Describe how you would set up an experiment to measu              |                                                                           | in momentum and time to calculate the change in                                                                                      | and distance                                                                                                           |  |
| compare the friction provided by different surfaces:              | ure the force required to slide a block over surfaces to                  | momentum of a system, as in 4.6                                                                                                      | A girl drags her school bag 30m along the floor with                                                                   |  |
| compare the inction provided by different surfaces                | <del></del>                                                               | The car in 4.4 crashes into a brick wall, taking 0.1s to lose                                                                        | a force of 150N. How much work has she done?                                                                           |  |
|                                                                   |                                                                           | all of its momentum (come to a stop). Calculate the                                                                                  | d= Equation:                                                                                                           |  |
|                                                                   |                                                                           | average force suffered by the car.                                                                                                   |                                                                                                                        |  |
|                                                                   |                                                                           | m=                                                                                                                                   |                                                                                                                        |  |
|                                                                   |                                                                           | v= Equation:                                                                                                                         | E= ??  Answer: E= unit:                                                                                                |  |
| 4.4 Use the equation linking momentum, mass and                   | 4.5 Demonstrate an understanding of momentum as                           | u= Insert values:                                                                                                                    | She then puts her P.E. kit into her bag and                                                                            |  |
| velocity to calculate the momentum of a moving                    | <u>a vector quantity</u>                                                  | t=                                                                                                                                   | continues to drag it another 15m, transferring                                                                         |  |
| <u>object</u>                                                     | A 'vector quantity' is a quantity which has and                           | F= ?? Answer: F= unit:                                                                                                               | 6000J before being told to put it on her shoulders.                                                                    |  |
| A car of mass 1200kg travels at 5m/s. Calculate its               | Which of the following is <u>not</u> a vector quantity?                   | A 0.2kg snooker ball collides with another ball, taking                                                                              | How much force did she have to apply?                                                                                  |  |
| momentum, showing your workings:                                  | a. Momentum<br>b. Mass                                                    | 0.0005s. Its velocity afterwards is 1m/s, still travelling in                                                                        | Equation:                                                                                                              |  |
| m= Equation:                                                      | c. Velocity                                                               | the same direction. The force involved is 100N.                                                                                      | d= Rearranging:                                                                                                        |  |
|                                                                   | Explain your answer:                                                      | m=                                                                                                                                   | F= ?? Insert values:                                                                                                   |  |
| V= Insert values:                                                 |                                                                           | Equation:                                                                                                                            | Answer: F= unit:                                                                                                       |  |
| p= ?? Answer: p= unit:                                            |                                                                           | u=??                                                                                                                                 | If she had dragged it half this distance, how much                                                                     |  |
|                                                                   |                                                                           | t=                                                                                                                                   |                                                                                                                        |  |
| 4.6 Demonstrate an understanding of the idea of lines             | ar momentum conservation                                                  | F= Insert values:                                                                                                                    | work would she have done? Explain your answer:                                                                         |  |
| Linear momentum means momentum in a straight                      |                                                                           | Answer: u= unit:                                                                                                                     | / \                                                                                                                    |  |
| Conservation of linear momentum means that the                    |                                                                           |                                                                                                                                      |                                                                                                                        |  |
| and after a                                                       | earenternam is serore                                                     |                                                                                                                                      |                                                                                                                        |  |
|                                                                   | ollides and joins with a stationary train carriage of mass                | 4.11 Demonstrate an understanding that energy transfe                                                                                | erred (joule, J) is equal to work done (joule, J)                                                                      |  |
|                                                                   |                                                                           | A woman has 50 000 J of GPE at the top of a diving board                                                                             | d. How much work has she done by the time she hits the                                                                 |  |
| 15 000 kg. Calculate the velocity of the two joined carr          |                                                                           | water? Explain your answer:                                                                                                          |                                                                                                                        |  |
| Before the collision                                              | After the collision                                                       |                                                                                                                                      |                                                                                                                        |  |
| Equation:                                                         | Equation:                                                                 |                                                                                                                                      |                                                                                                                        |  |
| m= Insert values:                                                 | m= Rearranged:                                                            |                                                                                                                                      | 4.12 Recall what power is and its unit & 4.14 Recall the unit for power in fundamental terms.                          |  |
| V=                                                                | v= ??                                                                     | The unit for power is: This can also be written in as:                                                                               |                                                                                                                        |  |
| p= ?? Answer: p= unit:                                            | Answer: v= unit:                                                          | Power is defined as the rate of (energy                                                                                              | transferred).                                                                                                          |  |
|                                                                   | Answer: v= unit:                                                          | The equation for nower is:                                                                                                           |                                                                                                                        |  |